Synthesis and Crystal Structure of (4S,5R)-2-[2-(Hydroxyethyl)imino]-3,4-dimethyl-5-phenyl-1,3-thiazolidine

O. A. Nurkenov^a, A. M. Gazaliev^a, M. K. Ibraev^a, D. M. Turdybekov^b, A. S. Sultanov^a, K. M. Turdybekov^b, and S. M. Adekenov^b

^a Institute of Organic Chemistry and Coal Chemistry of Kazakhstan, ul. Alihanova 1, Karaganda, 100000 Kazakhstan e-mail: mkibr@yandex.ru

^b Institute of Phytochemistry, Ministry of Science and Education of Kazakhstan, Karaganda, Kazakhstan

Received June 15, 2005

Abstract — Acid hydrolysis of l-N-[N'-(2-vinyloxy)ethylcarbamothioyl]ephedrine was studied. The synthesized (4S,5R)-2-[2-(hydroxyethyl)imino]-3,4-dimethyl-5-phenyl-1,3-thiazolidine was studied by means of X-ray diffraction.

DOI: 10.1134/S1070363206070231

Thiourea derivatives exhibit antimicrobial, antiinflammatory, antiulcer, and nematocide properties; growth-regulating and high insecticide and acaricide activity of such compounds has also been reported [1, 2]. The interest in thiourea derivatives is explained not only by their biological activity, but also by the fact that they are convenient synthons in organic synthesis, especially in heterocyclic synthesis [3, 4].

The information on hydrolysis of thiourea derivatives of ephedrine alkaloids is scarce. It is known that thioamides are difficult to hydrolyze, especially in alkaline medium; complete hydrolysis to form carboxylic acids, hydrogen sulfide, and ammonia or amines is possible, but not infrequently hydrolysis gives rise to nitroles, heterocyclic compounds, or

oxidative cleavage products [6].

Proceeding with the research toward the synthesis and biological activity of thioamides [5], we synthesized l-N-[N'-(2-vinyloxy)ethylcarbamothioyl]ephedrine (**III**) by the reaction of l-ephedrine (**I**) with 2-vinyloxyethyl isothiocyanate (**II**) in alcoholic medium.

$$\mathbf{I} \xrightarrow{\mathbf{H}^{+}} \begin{bmatrix} \mathbf{C}_{6}\mathbf{H}_{5}^{+}\mathbf{C}\mathbf{H} - \mathbf{C}\mathbf{H} - \mathbf{C}\mathbf{H}_{3} \\ | \mathbf{N}\mathbf{C}\mathbf{H}_{3} \\ | \mathbf{S} = -\mathbf{C} - \mathbf{N}\mathbf{H}\mathbf{C}_{2}\mathbf{H}_{4}\mathbf{O} = \mathbf{C}\mathbf{H}\mathbf{C}\mathbf{H}_{3} \end{bmatrix} \xrightarrow{\mathbf{C}_{6}\mathbf{H}_{5}} \xrightarrow{\mathbf{C}\mathbf{H}_{3}} \xrightarrow{\mathbf{H}\mathbf{O}^{-}} \xrightarrow{\mathbf{N}\mathbf{C}\mathbf{H}_{3} \cdot \mathbf{H}\mathbf{C}\mathbf{I}} \xrightarrow{\mathbf{N}\mathbf{C}\mathbf{H}_{3} \cdot \mathbf{H}\mathbf{C}\mathbf{I}} \xrightarrow{\mathbf{N}\mathbf{C}\mathbf{H}_{2}\mathbf{C}\mathbf{H}_{2}\mathbf{O}\mathbf{H}} \xrightarrow{\mathbf{N}\mathbf{C}\mathbf{H}_{2}$$

$$C^{14}$$
 C^{13}
 C^{15}
 C^{16}
 C^{16}
 C^{12}
 C^{11}
 C^{15}
 C^{16}
 C^{10}
 C^{10}

Structure of (4S,5R)-2-[2-(hydroxyethyl)imino]-3,4-dimethyl-5-phenyl-1,3-thiazolidine

To study the reactivity of a thioamide derived from *l*-ephedrine containing a substituted 2-hydroxyethyl group, we accomplished acid hydrolysis of compound **III** in the presence of concentrated hydrochloric acid at room temperature. It was found that the acid hydrolysis provides a five-membered sulfur-containing heterocyclic compound, viz. 2-imino-1,3-thiazolidine **IV**.

The cyclization appears to involve intramolecular nucleophilic attack of the sulfur atom on a positively charged carbon atom in intermediate **V**. Free base **IV** was isolated by treatment of hydrochloride **VI** with alkali.

Thus, the acid hydrolysis of the thiourea ephedrine derivative at room temperature gives 2-imino-1,3-thiazolidine **IV**. The steric structure of (4S,5R)-2-[2-(hydroxyethyl)imino]-3,4-dimethyl-5-phenyl-1,3-thiazolidine was studied by X-ray diffraction (see figure).

The bond lengths and bond angles in molecule V are close to normal values [7]. The conformation of the thiazolidine ring in molecule IV is a slightly distorted 4β -envelope (ΔC_s^4 9.57°). The C^4 atom deviates from the ring plane by ± 0.49 A, and the S^1 , C^2 , N^3 , and C^5 atoms are coplanar within ± 0.05 Å. In the 4β -envelope conformation, the methyl group on C^4 and the phenyl group on C^5 are axial (the $C^{10}C^4N^3C^2$ and $C^{11}C^5C^2N^3$ torsion angles are $\pm 91.72^\circ$ and

 $\pm 88.54^{\circ}$, respectively). The methyl and hydroxyethylamino groups on N^3 and C^2 are equatorial ($C^5C^4N^3C^9-169.49^{\circ}$, $C^4N^3C^2N^6$ 167.0°). The 4 β -envelope conformation is also characteristic of (2-p-bromophenyl)-3,4-dimethyl-5-phenyl-1,3-oxazolidine [8].

Because of the presence in the oxazolidine derivatives of l-ephedrine and d-pseudoephedrine of substituents on C^4 , C^5 , and N^3 , another favorable ring conformation is 3α -envelope. In this case, the methyl group on N^3 is equatorial, and the other two substituents on the above atoms are preudoequatorial. It is this conformation that is characteristic of most oxazolidine derivatives of pseudoephedrine, for example, (2S,4S,5S)-3,4-dimethyl-5-phenyl-2-phenylethynyl-1,3-oxazolidine [9].

EXPERIMENTAL

The IR spectra were measured on a UR-20 instruent in KBr. The ¹H NMR spectra were obtained on a Varian Mercury-300 instrument (300 MHz) in CD₃Cl against internal HMDS. The melting points were measured on a Boetius hot stage.

X-ray diffraction analysis of (4S,5R)-2-[2-(hydroxyethyl)imino]-3,4-dimethyl-5-phenyl-1,3-thiazolidine (4S,5R-IV). The unit cell parameters and the intensities of 1383 unique reflections of compound IV were measured at 20°C on a Bruker-P4 automated

four-circle diffractometer (graphite monochromator, MoK_{α} radiation, $\theta/2\theta$ scanning, $2\theta < 50^{\circ}$). Rhombic crystals, a 7.0181(6), b 10.891(1), c 17.511(2) Å; V 1338.4(2) ų, $d_{\rm calc}$ 1.242 g cm⁻³, Z 4 ($C_{13}H_{18}N_2OS$). Space group $P2_12_12_1$.

Calculations involved 1341 reflections with $I > 2\sigma$. The structure was solved by the direct method and refined by full-matrix least squares anisotropically for non-hydrogen atoms. Hydrogen atoms were located geometrically and fixed by the rider model. Absorption correction by the ψ curves was applied. Weight parameter 0.71073. Final divergence factors R 0.0391 and R_W 0.1069. The structure solution and refinement were performed using the SHELXS-97 program.

l-N-[*N'-*(**2-vinyloxy**)ethylcarbamothioyl]ephedrine (III). 2-Vinyloxyethyl isothiocyanate (II), 1.5 g, was added to a solution of 2 g of *l*-ephedrine (I) in 5 ml of ethanol. The mixture was stirred at 20°C for 20–30 min, reduced by 1/3, and left to stand for 12 h at 20°C. The precipitate that formed was filtered off and washed with ether to obtain 2.9 g (86%) of compound III, mp 96–97°C. IR spectrum, v, cm⁻¹: 1530–1500 [(NHC(S)], 3400–3200 (OH). 1 H NMR spectrum, δ , ppm: 0.86 d (CH₃CH, J_{HH} 8.4 Hz), 2.01 s (CH₃N), 2.34–2.52 m (CHCH₃), 4.43 d (CHO, J_{HH} 10.6 Hz), 7.10–7.24 m (C₆H₅), 3.06–3.40 d.d (CH₂), 6.44 d (CH=C), 3.50 d (C=C²). Found, %: C 61.27; H 7.36. C₁₅H₂₂N₂O₂S. Calculated, %: C 61.22; H 7.48.

(4S,5R)-2-[2-(Hydroxyethyl)imino]-3,4-dimethyl-5-phenyl-1,3-thiazolidine (4S,5R-IV). Concentrated HCl, 10 ml, was added dropwise to 1.5 g of compound III at room temperature. The mixture was stirred for 3 h, diluted with six volumes of water, and the water was distilled in a vacuum. The residue was treated with 40% aqueous NaOH to ®H 10–11. The reaction product was extracted with benzene, the or-

ganic layer was dried with Na_2SO_4 , and the solvent was removed to obtain 0.76 g (60%) of a crystalline substance, mp 108?109°C. IR spectrum, ν , cm⁻¹: 1680–1650 (C=N), 3500–3000 (OH). ¹H NMR spectrum, δ , ppm: 0.92 d (CH₃CH, J_{HH} 8.6 Hz), 2.10 s (CH₃N), 2.30–2.50 m (CHCH₃), 4.93 d (CHS, J_{HH} 10.6 Hz), 7.00–7.15 m (C₆H₅), 3.20 d (NCH₂), 3.40 d (CH₂CH₂). Found, %: C 62.35; H 7.12. C₁₃H₁₈N₂OS. Calculated, %: C 62.40; H 7.20.

REFERENCES

- 1. US Patent 5 190 961, Ref. Zh. Khim., 1995, 15059P.
- 2. Mital, P.S., Kumar, N., Tanega, A.D., *J. Indian Chem. Soc.*, 1988, vol. 65, no. 5, p. 382.
- 3. Mel'nikov, N.N. and Baskakov, Yu.A., *Khimiya gerbitsidov i regu-lyatorov rosta rastenii* (Chemistry of Herbicides and Plant Growth Regulators), Moscow: Goskhimizdat, 1962.
- 4. Barton, D.H.R. and Ollis, W.D., *Comprehensive Organic Chemistry*, Oxford: Pergamon, 1979, vol. 3.
- 5. Gazaliev A.M., Zhurinov M.Zh., and Fazylov, S.D., *Novye bioaktivnye proizvodnye alkaloidov* (New Bioactive Derivatives of Alkaloids), Almaty: Gylym, 1992.
- 6. Trofimov, B.A., *Geteroatomnye proizvodnye atsetilena* (Heteroatomic Derivatives of Acetylenes), Moscow: Nauka, 1981.
- 7. Allen, F.H., Kennard, O., Watson, D.G., Brammer, L., Orpen, A.G., and Taylor, R., *J. Chem. Soc., Perkin Trans.* 2, 1987, p. S1.
- 8. Cambridge Structural Database, Version 5.23, April 2002.
- 9. Nurkenov, O.A., Markova, I.V., Shalbaeva, A.B., Turdybekov, K.M., and Gazaliev, A.M., *Zh. Obshch. Khim.*, 1999, vol. 69, no. 4, p. 679.